翻訳と辞書 |
Superstrong cardinal : ウィキペディア英語版 | Superstrong cardinal In mathematics, a cardinal number κ is called superstrong if and only if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point κ and ⊆ ''M''. Similarly, a cardinal κ is n-superstrong if and only if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point κ and ⊆ ''M''. Akihiro Kanamori has shown that the consistency strength of an n+1-superstrong cardinal exceeds that of an n-huge cardinal for each n > 0. == References ==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Superstrong cardinal」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|